Con motivo del año internacional de la astronomía, en el 2009, diferentes centros educativos se pusieron de acuerdo para calcular la medida del radio de La Tierra utilizando los mismos procedimientos, Eratóstenes en el año 240 a.c, siguió para determinarlo aunque esta vez un año posterior. Pero ¿En qué consistía este experimento? ¿En qué se basó?.He aquí la respuesta:
Eratóstenes nació en Cyrene en el año 276 a.c. Fue astrónomo, historiador, geógrafo, filósofo, poeta, crítico teatral y matemático. Eratóstenes fue un sabio de su época, docto y conocedor de todas las artes y las ciencias. Su principal contribución a la astronomía fue sostener que la tierra era redonda y estimar el radio de la tierra.
Era famoso, en aquella época que, en la ciudad de Siena(cuyo nombre proviene del material utilizado para construir los imponentes obeliscos que poblaban la ciudad), determinado día del año justo al llegar el mediodía, el Sol se reflejaba en el agua de un pozo, es decir, este día y a esta hora, El Gran Astro quedaba situado de forma vertical al agua. Contaban que los numeroso obeliscos de esta ciudad y otros objetos, en ese momento, no proyectaban sombra alguna. Eratóstenes no dejó pasar desapercibido este fenómeno y alentado por las célebres historias a cerca de que, un determinado día al año, los objetos no proyectaban sombra alguna, mandó a Siena, la actual Asuán (no confundir con la ciudad italiana dónde se celebran las famosas carreras de caballos entre las distintas contradas) a unos hombres con una propósito: Medir la distancia desde esta ciudad hasta Alejandría, allí donde él residía. Eratóstenes conocía que Siena se situaba aproximadamente en el mismo meridiano que la ciudad del conocido faro y de la famosa Biblioteca, segun lo que exponía el autor Dicearco en sus obras, y comprobó que, ese mismo día del año, no pasaba lo mismo allí: Aún siendo pequeña, los obeliscos proyectaban sombra. Con esto quedaba demostrada su teoría de que, La Tierra debía ser redonda, provocando distintas sombras en distintos lugares según como golpearan los rayos del Sol sobre la superficie de la esfera.
Después de descubrir esto, su voluntad fue la de hallar el radio de La Tierra y para ello, tras mucho meditar, ideó el siguiente método:
El día en el que el Sol caía perpendicular en la ciudad de Siena midió (con la longitud de la bara y de la sombra) el ángulo que formaban los rayos con un gnomon que había situado en su estudio de Alejandría. Comprobó, de nuevo, que el ángulo, además de ser independiente del tamaño de la bara utilizada, era distinto al de Siena. Midió ese ángulo y lo único que le faltaba para llevar a cabo sus cálculos era medir la distancia entre las dos ciudades, como ya hemos dicho antes. Así, envió a unos hombres en carro para que hiciera este recorrido. Durante el trayecto, los esclavos debían contar las vueltas que daba cada rueda, extender largar cuerdas a lo largo del camino, a contar pasos, etc. Deberían medir este trayecto una vez a la ida y otra a la vuelta, para obtener con mayor precisión los datos y así, determinar la distancia que había entre estas dos ciudades. El resultado obtenido fueron 5000 estadios, antigua unidad de medida, que equivalen a 787.5 kilómetros, aunque actualmente sabemos que Eratóstenes cometió algunas inexactitudes, pues la distancia real entre estas dos ciudades es de 729 kilómetros. Conociendo esta distancia Eratóstenes pudo proceder a desarrollar su modelo teórico.
Asumiendo que una línea que corta a dos rectas paralelas forma ángulos opuestos iguales, como podemos observar en la imagen superior. Este ángulo es igual a la diferencia de latitud geográfica entre Siena y Alejandría, dato que hoy en día vemos más evidente por la división del planeta en meridianos y paralelos que tienen como unidad de medida los grados.
Por consiguiente, Eratóstenes dedujo que si lograba determinar el ángulo con el cual los rayos del Sol incidían sobre Alejandría ( sobre Siena los rayos incidían de forma perpendicular, por tanto el ángulo sería 0º), podría delimitar el radio terrestre.
Cuando nos propusieron la idea de calcular nosotros experimentalmente el radio de la Tierra, nos pareció una idea apasoniante, entre otras razones, una era el hecho de calcularlo utilizando el método que empleó Eratóstenes. Obviamente, nuestros materiales utilizados eran distintos. Nos dispusimos en el patio del colegio donde, unas horas antes del zénit solar, colocamos un papel minimamente grande y encima de éste un gnomon, con la finalidad de que la sombra de éste fuera proyectada sobre dicho papel. Situamos el papel con orientación norte por un simple motivo experimental. Ya que el sol sale por el este y se esconde por el oeste, si la orientación de este papel es otra, quizá las sombras proyectadas no sean en el papel sino en el propio suelo del patio. También, es importante marcar, donde situamos el gnomon, su contorno, para que en el caso de que se desplace, volver a colocarlo en su posición inicial y los datos sean válidos.
Los rayos del Sol incidía sobre este gnomon, y cada 5 minutos tomamos las medidas de las sombras del gnomon, en su punto máximo, para así poder observar su variación y movimiento con el paso de las horas, nosotros estuvimos aproximadamente de 2 horas y media.
Posteriormente, tan posterior que en nuestro caso fueron días después, con los resultados obtenidos pretendimos trazar una mediatriz desde dos puntos a la misma distancia del gnomon. Al trazarla, el resultado sería la sombra más corta, por lo tanto podríamos calcular la hora solar.
Con estos datos, ya podríamos empezar a realizar los cálculos para averiguar el radio de la Tierra.
Hay un pequeño fallo entre estos dos colegios, no se encuentran en el mismo meridiano, por tanto, los datos no serán tan válidos. Pero, ¿qué podemos hacer? Como ya sabemos, por cada grado que nos desplazamos el cenit solar varía 4 minutos.
La diferencia entre las latitudes es de 0,855º. Por tanto:
1º------------4min
0,855º-------x
x= 3,422 min de diferencia entre ambos colegios.
El Sol sale por el este y se esconde por el oeste, y como Vizcaya se encuentra más al oeste que Madrid, habrá que restarle estos minutos, y si fuera al revés se sumaría.
3,422min= 3 min 25seg (0,422·60)
13h18min--->13h21min25seg
Al cambiar la hora solar los grados con los que el Sol incide sobre dicho lugar varían.
13h18min=13,3h
13h21min25seg=13,356h
13,3h----------44,65º
13,356----------x
x=44,841º
Cuando ya conocemos los grados para Vizcaya suponiendo que se encuentra en el mismo meridiano que el Base, podemos seguir el procedimiento que siguió Eratóstenes.
90º-α= 90º-44,841º= 45,159º
90º- β
Diferencia angular= 48,96º-45,159º=3,801º
La distancia existente entre estos dos colegios es 310,10km, si para esta distancia hay una distancia angular de 3,801º, ¿para toda la esfera?
3,801º-------320,01km
360º----------x
x= 30309,707 km
Esta distancia sería el perímetro terrestre. Si el perímetro es igual a 2∏r.
r=30309,707km/2·∏ = 4824,235 km
Este experimento nos ha parecido realmente apasionante y curioso, a parte de no obtener el radio exacto, es interesantísimo realizar el mismo experimento que hizo Eratóstenes varios siglos atrás, tanto la parte experimental como la parte de cálculo.